42 research outputs found

    A Genome-Wide Analysis Reveals Significant Overlap of Transcription and DNA Repair in Stationary Phase Yeast

    Get PDF
    The association between transcription and DNA repair is acknowledged as a player in the generation of mutations in a non-random fashion in prokaryotes and eukaryotes. Previous studies demonstrated that the transcription complex is capable of directing DNA repair to sites of transcription. This process is especially important to growth-arrested cells, in which many DNA repair capacities are diminished; it may also lead to mutations preferentially in transcribed genes. Using microarray analysis of growth-arrested yeast cultures, we demonstrated on a genomic scale, the co-localization of a DNA-turnover marker, indicative of DNA-repair-associated DNA synthesis, with genes persistently transcribed during stationary phase. This may serve as a clue regarding the non-random manner in which non-dividing cells may potentially mutate in the absence of replication, solely as a result of their inherent, transcriptional stress response

    Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    Get PDF
    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues

    Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides

    Get PDF
    Background: The environment can have a decisive influence on the structure of the genome, changing it in a certain direction. Therefore, the genomic distribution of environmentally sensitive transposable elements may vary measurably across a species area. In the present research, we aimed to detect and evaluate the level of LTR retrotransposon intraspecific variability in Aegilops speltoides (2n=2x=14), a wild cross-pollinated relative of cultivated wheat. Results: The inter-retrotransposon amplified polymorphism (IRAP) protocol was applied to detect and evaluate the level of LTR retrotransposon intraspecific variability in Ae. speltoides and closely related species of sect. Sitopsis. IRAP analysis revealed significant diversity in TE distribution. Various genotypes from the same population significantly differ with respect to the patterns of the four explored LTR retrotransposons (WIS2, Wilma, Daniela, and Fatima). This diversity points to a constant ongoing process of LTR retrotransposon fraction restructuring in populations of Ae. speltoides throughout the species’ range and within single populations in time. Maximum changes were recorded in genotypes from small stressed populations. Principal component analysis showed that the dynamics of the Fatima element in populations of Ae. speltoides significantly differ from those of WIS2, Wilma, and Daniela. In terms of relationships between Sitopsis species, IRAP analysis of WIS2, Wilma, and Daniela elements revealed a grouping similar to groupings determined by other methods, with Ae. sharonensis and Ae. longissima forming a separate unit, Ae. speltoides appearing as a dispersed group, and Ae. bicornis being in an intermediate position. Conclusions: IRAP display data revealed dynamic changes in LTR retrotransposon fractions in the genome of Ae. speltoides. The process is permanent and population-specific, ultimately leading to the separation of small stressed populations from the main bunch.Peer reviewe

    Hard Rescattering in QCD and High Energy Two-Body Photodisintegration of the Deuteron

    Get PDF
    Photon absorption by a quark in one nucleon followed by its high momentum transfer interaction with a quark in the other may produce two nucleons with high relative momentum. We sum the relevant quark rescattering diagrams, to show that the scattering amplitude depends on a convolution between the large angle pnpn scattering amplitude, the hard photon-quark interaction vertex and the low-momentum deuteron wave function. The computed cross sections are in reasonable agreement with the data.Comment: Four pages Latex, uses espcrc1.sty. Presented at 15th International Conference on Particle and Nuclei (PANIC 99), Uppsala, Sweden, 10-16 Jun 199

    QCD Rescattering and High Energy Two-Body Photodisintegration of the Deuteron

    Get PDF
    Photon absorption by a quark in one nucleon followed by its high momentum transfer interaction with a quark in the other may produce two final-state nucleons with high relative momentum. We sum the relevant quark rescattering diagrams, to show that the scattering amplitude depends on a convolution between the large angle pnpn scattering amplitude, the hard photon-quark interaction vertex and the low-momentum deuteron wave function. The computed absolute values of the cross section are in reasonable agreement with the data.Comment: 4 pages, revised version to be published in Phys. Rev. Let

    Transposable elements in a marginal plant population : temporal fluctuations provide new insights into genome evolution of wild diploid wheat

    Get PDF
    Background How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. Results Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen. Conclusions We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.Peer reviewe

    Color coherent phenomena on nuclei and the QCD evolution equation

    Get PDF
    We review the phenomenon of color coherence in quantum chromodynamics (QCD), its implications for hard and soft processes with nuclei, and its experimental manifestations. The relation of factorization theorems in QCD with color coherence phenomena in deep inelastic scattering (DIS) and color coherence phenomena in hard exclusive processes is emphasized. Analyzing numerically the QCD evolution equation for conventional and skewed parton densities in nuclei, we study the onset of generalized color transparency and nuclear shadowing of the sea quark and gluon distributions in nuclei as well as related phenomena. Such novel results as the dependence of the effective coherence length on Q2Q^2 and general trends of the QCD evolution are discussed. The limits of the applicability of the QCD evolution equation at small Bjorken xx are estimated by comparing the inelastic quark-antiquark- and two gluon-nucleon (nucleus) cross sections, calculated within the DGLAP approximation, with the dynamical boundaries, which follow from the unitarity of the SS matrix for purely QCD interactions. We also demonstrate that principles of color coherence play an important role in the processes of soft diffraction off nuclei.Comment: 58 pages, 19 figures, Revtex. Minor editor's changes, final version published in J.Phys. G27 (2001) R23-6

    Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pattern-forming bacterium <it>Paenibacillus vortex </it>is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other <it>Paenibacillus </it>species (<it>Paenibacillus </it>sp. JDR-2 and <it>Paenibacillus larvae</it>) have been sequenced. However, no genomic data is available on the <it>Paenibacillus </it>species with pattern-forming and complex social motility. Here we report the <it>de novo </it>genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium.</p> <p>Results</p> <p>The complete <it>P. vortex </it>genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the <it>P. vortex </it>genome revealed 6,437 open reading frames (ORFs) and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS) genes, transcription factors (TFs), transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes.</p> <p>Conclusions</p> <p>These findings suggest that <it>P. vortex </it>has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, <it>P. vortex </it>is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.</p

    A Novel Unsupervised Method to Identify Genes Important in the Anti-viral Response: Application to Interferon/Ribavirin in Hepatitis C Patients

    Get PDF
    Background: Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in viral clearance remains challenging. Aims: The goal of this paper is to link viral levels with gene expression and thereby identify genes that may be responsible for early decrease in viral titer. Methods: Microarrays were performed on RNA isolated from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14 and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based proximities and inter-patient viral titer based proximities to define the association between microarray gene expression measurements of each gene and viral-titer measurements. Results: We detected 36 unique genes whose expressions provide a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2, viperin and many ISG's of unknown function. Conclusion: The genes identified by this method appear to play a major role in the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray data are available. © 2007 Brodsky et al

    Hard diffractive electroproduction of vector mesons in QCD

    Get PDF
    Hard diffractive electroproduction of longitudinally polarized vector mesons is calculated within the leading αslnQ2ΛQCD2\alpha_s\ln{Q^2\over\Lambda_{QCD}^2} approximation of QCD using the leading order parton densities within the nucleon. Novel QCD features of the production of excited states and of the restoration of flavor symmetry are analyzed. At the onset of the asymptotic regime, our analysis finds an important role of quark Fermi motion within the diffractively produced vector mesons, and we suggest to use this effect to measure the high momentum tail of the wave function of the vector mesons. We deduce a kinematical boundary for the region of applicability of the decomposition of the hard amplitudes over powers of Q2Q^2 and/or a limit on the increase of the cross sections of hard processes at small xx, and briefly analyze its consequences. We also estimate the nuclear attenuation of the diffractive electroproduction of vector mesons and compare with estimates of the shadowing of the longitudinal structure function.Comment: 64 pages, REVTeX, 16 figures optionally included using epsfig.sty, Revisions in regards to Charmonium photo- and electroproduction, final version to appear in Phys. Rev.
    corecore